

Lipase-mediated asymmetric acetylation of prochiral diols directed towards total syntheses of biologically active molecules

Kozo Shishido *, Toshikazu Bando

Institute for Medicinal Resources, University of Tokushima, Sho-machi 1, Tokushima 770, Japan
Received 26 September 1997; accepted 19 November 1997

Abstract

Lipase mediated asymmetric acetylation of σ -symmetrical 2-aryl-1,3-propanediols (1a-f), which were prepared conveniently via sequential Heck coupling between (5a-f) and (6), ozonolysis and reductive workup, provided the enantiomerically enriched monoacetates (2a-f) in good chemical and optical yields. These monoacetates (2a-f) were successfully converted into the biologically and pharmacologically interesting molecules, Baclofen (10), ar-turmerone (13), α -cuparenone (19), ent-aflatoxin B₂ (24), ibuprofen (26), naproxen (28), and indolmycin (32) as optically active forms, respectively. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Lipase; Asymmetric acetylation; Heck reaction; Prochiral diol; Total synthesis

Tertiary and quaternary carbon centers at benzylic position are found in a wide range of natural and unnatural compounds which possess biological and pharmacological activities, and these structural features present a number of synthetic challenges. In this paper, we present an efficient strategy for asymmetric constructions of the benzylic tertiary and quaternary stereogenic centers and its application to enanti-ocontrolled syntheses of some natural and unnatural molecules. We envisaged that the benzylic asymmetric tertiary carbon (e.g., in 2) can be constructed by a lipase-mediated asymmetric acetylation of the prochiral diol (1) [1,2], while the quaternary center (e.g., in 4) might be as-

sembled by employing the diastereoselective [1,5] C–H insertion reaction of alkylidene carbene (3) which would readily be derived from 2. (Scheme 1)

A variety of prochiral diols (1a-f), ² substrates for the key chemoenzymatic transformation, were prepared efficiently by sequential Heck reaction [10–12] between the corresponding aryl iodides (5a-f) and 2-tert-butyl-4,7-dihydro-1,3-dioxepine (6) [10], ozonolysis and reductive treatment with NaBH₄ as shown in Scheme 2.

With the substrate for a key conversion in hand, we next turned to the search for optimum

Corresponding author.

Representative references for cyclopentene annulation: [6–8].

² For a conventional method: see Ref. [9].

$$Ar \xrightarrow{OH} \xrightarrow{\text{Lipase}} Ar \xrightarrow{Ar} \xrightarrow{OH} OAc$$

$$1$$

$$2$$

$$Ar \xrightarrow{R} R'$$

Scheme 1.

Scheme 2

conditions for the lipase-mediated asymmetric acetylation of prochiral diols (1a-f) using vinyl acetate as an acyl donor in organic solvents. The results are shown in Table 1. The enantiomerically enriched monoacetates (2a-f) were obtained in good chemical yields. The enantiomeric excesses were 85-99% as determined by ¹H NMR analyses of their MTPA ester derivatives or HPLC analyses. The absolute configurations of newly generated tertiary stereogenic centers in 2a-f were established by the empirical rule based on the chemical shifts of the corresponding MTPA esters [3-5] or by comparison of the sign of specific rotation with that of authentic materials. (Table 1)

Chiral monoacetates ($2\mathbf{a}$ – \mathbf{f}) with a tertiary stereogenic center at the benzylic position thus obtained were then transformed into biologically interesting natural and unnatural molecules as follows. R-3-Acetoxy-2-(4-chlorophenyl)-1-propanol ($2\mathbf{a}$) (99% ee) was converted via a six-step sequence into Baclofen (10), an analog of the inhibitory neurotransmitter γ -aminobutyric acid [13–16]. (Scheme 3)

R-3-Acetoxy-2-tolyl-1-propanol (**2b**) (99% ee) was initially converted into the biologically promising aromatic bisabolene type sesquiterpene *ar*-turmerone (**13**). ³ For the construction of benzylic quaternary center and its application, the intermediate cyanide (**12**) was then led

Synthesis of the unnatural enantiomer (24) of a mycotoxin aflatoxin B_2 was formally completed by converting S-2c (89% ee) into the tetrahydro[2,3-b]benzofuran (23) [20,21], a penultimate intermediate in the synthesis of optically active 24, as shown in Scheme 5 [22].

Table 1
Lipase mediated asymmetric acetylation of prochiral diols 1a-f

Ar——OH		Lipase OAc		/_OH	
	OH	solvent, room temp.		OAc 2a-f	
Ar	Lipase	solvent	yield of 2, %	ee, %	abs. config.
a _{Cl}	PPL	Et ₂ O	92	99	R
b Me	PPL	$\mathrm{Et_2O}$	90	99	R
e MeO OMOM	AL	Et ₂ O	72	89	S
d \	PPL	Et ₂ O	76	99	R
e MeO	PPL	Et ₂ O	80	89	R
\mathbf{f} $\mathbf{\hat{S}O_2Ph}$	AK	benzene	82	85	S

to the in situ formation of alkylidene carbene species (16) via the iodonium salt (15) according to the procedure developed by Ochiai et al. [7]. The [1,5] C–H insertion reaction gave rise to the cyclized product (17), which was converted into the known enone (18) [18] and the formal synthesis of α -cuparenone (19) was completed [19]. (Scheme 4)

³ For the first asymmetric synthesis: see Ref. [17].

Scheme 3. Reagents: (i) MsCl, ⁱPr₂NEt, 4-DMAP; (ii) KCN, 18-Crown-6; (iii) LiOH, 61% from **2a**; (iv) DEAD, Ph₃P, (PhO)₂PON₃, 75%; (v) aq. HCl; (vi), H₂, PtO₂.

$$Me \xrightarrow{\overline{}} OH \xrightarrow{\overline{}}$$

Scheme 4. Reagents: (i) TsCl, Et₃N; (ii) NaBH₄, DMSO, 60°C; (iii) LiAlH₄, 73% from **2b**; (iv) MsCl, [']Pr₂NEt, 4-DMAP; (v) KCN, 18-Crown-6, 79% from **11**; (vi) KOH, 88%; (vii) methallylmagnesium chloride; (viii) DIBAL-H, H₃O⁺ then NaBH₄, 75%; (ix) Ph₃P, CBr₄, 94%; (x), ["]BuLi, trimethylsilylacetylene, 69%; (xi) (PhIO)_n, BF₃·OEt₂; (xii) PhSO₂Na, H₂O, 83% from **14**; (xiii) Na–Hg, 70%; (xiv) PDC, [']BuOOH, Celite, 72%.

2-Arylpropionic acids are known as an important class of non-steroidal anti-inflammatory agents. Two representative members of this class

are ibuprofen (26) and naproxen (28). Since the pharmacological activities of the S-isomers of both have been reported to be stronger than

Scheme 5. Reagents: (i), TPAP, NMO; (ii), (EtO) $_3$ CH, HCl; (iii) BnCl, K $_2$ CO $_3$, 50% from **20**; (iv) KOH; (v) BH $_3$ ·SMe $_2$, (vi) p-TsOH, 43% from **21**; (vii) Pd–C, 1,4-cyclohexadiene, 100%.

OH OAc
$$3$$
 steps 72% OH $\frac{1}{54\%}$ OH $\frac{1}{54\%}$ CCO₂H $\frac{2}{54\%}$ OH $\frac{1}{54\%}$ CO₂H $\frac{1}{50}$ OAc $\frac{3}{57\%}$ MeO $\frac{1}{57\%}$ OH $\frac{1}{69\%}$ MeO $\frac{1}{69\%}$ MeO $\frac{1}{50}$ CO₂H $\frac{1}{50}$ CO₂H

OH
OAc
$$5$$
 steps
 \dot{S} $\dot{$

Scheme 7. Reagents: (i) KOH; (ii) CH₂N₂, 83% from **29**; (iii) LDA, O₂, P(OEt)₃, HMPA, 67%.

those of the *R*-isomers, development of an efficient and enantioselective synthetic route to *S*-isomers has received considerable attention. *R*-3-Acetoxy-2-(4-isobutylphenyl)-1-propanol (**2d**) (99% ee) and *R*-3-acetoxy-2-(6-methoxynaphth-2-yl)-1-propanol (**2e**) (89% ee) were easily converted into ibuprofen (**26**) and naproxen (**28**), respectively [23]. (Scheme 6)

Finally, S-2f (85% ee) was elaborated to the Mukaiyama's intermediate (31) [24] for the asymmetric total synthesis of antibacterial indolmycin (32) via an eight-step sequence of reactions [25]. (Scheme 7)

In conclusion, we have developed an efficient strategy for the construction of tertiary and quaternary asymmetric stereogenic centers at benzylic position by employing a lipase-mediated asymmetric acetylation of σ -symmetrical 2-aryl-1,3-propanediols as the key step. The versatility of enantiomerically enriched monoacetates thus obtained has been demonstrated by their successful conversion into some biologically important molecules.

References

- Y.-F. Wong, J.J. Lalonde, M. Momongan, D.E. Bergbreiter, C.-H. Wong, J. Am. Chem. Soc. 110 (1988) 7200.
- [2] G. Guanti, E. Narisano, T. Podgorski, S. Thea, A. Williams, Tetrahedron 46 (1990) 7081.

- [3] T. Kusumi, I. Ohtani, Y. Inouye, H. Kakisawa, Tetrahedron Lett. 29 (1988) 4731.
- [4] S. Takano, M. Takahashi, M. Yanase, Y. Sekiguchi, Y. Iwabuchi, K. Ogasawara, Chem. Lett. (1988) 1827.
- [5] F. Yasuhara, S. Yamaguchi, R. Kasai, O. Tanaka, Tetrahedron Lett. 27 (1986) 4033.
- [6] S. Ohira, K. Okai, T. Moritani, J. Chem. Soc., Chem. Commun. (1992) 721.
- [7] M. Ochiai, K. Uemura, Y. Masaki, J. Am. Chem. Soc. 115 (1993) 2528.
- [8] D.F. Taber, R.P. Meagley, D.J. Doren, J. Org. Chem. 61 (1996) 5723.
- [9] P.A. Levene, G.M. Meyer, Org. Synth., Coll. 2 (1943) 288.
- [10] S. Takano, K. Samizu, K. Ogasawara, Synlett (1993) 393.
- [11] T. Sakamoto, Y. Kondo, H. Yamanaka, Heterocycles 36 (1993) 2437.
- [12] Y. Koga, M. Sodeoka, M. Shibasaki, Tetrahedron Lett. 35 (1994) 1227.
- [13] N.G. Bowery, D.R. Hill, A.L. Hudson, A. Doble, D.N. Middlemiss, J. Shaw, M. Turnbull, Nature 283 (1980) 92.
- [14] N.G. Bowery, D.R. Hill, A.L. Hudson, Br. J. Pharmacol. 78 (1983) 191.
- [15] R. Chênevert, M. Desjardins, Tetrahedron Lett. 32 (1991) 4249
- [16] H.R. Olpe, H. Demiéville, V. Baltzer, W.L. Bencze, W.P. Koella, P. Wolf, H.L. Haas, Eur. J. Pharm. 52 (1978) 133.
- [17] A.I. Meyers, R.K. Smith, Tetrahedron Lett. (1979) 2749.
- [18] A.I. Meyers, B.A. Lefker, J. Org. Chem. 51 (1986) 1541.
- [19] T. Kosaka, T. Bando, K. Shishido, Chem. Commun. (1997) 1167.
- [20] J.C. Roberts, A.H. Sheppard, J.A. Knight, P. Foffey, J. Chem. Soc. C (1968) 22.
- [21] G. Büchi, S.M. Weinreb, J. Am. Chem. Soc. 93 (1971) 746.
- [22] K. Bando, K. Shishido, Synlett (1997) 665.
- [23] T. Bando, Y. Namba, K. Shishido, Tetrahedron: Asymmetry 8 (1997) 2159.
- [24] T. Takeda, T. Mukaiyama, Chem. Lett. (1980) 163.
- [25] T. Bando, K. Shishido, Heterocycles 46 (1997) 111.